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NUMERICAL SIMULATION OF AN IMPINGING JET O N  
AFLATPLATE 
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Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan 40227, R.O.C. 

SUMMARY 
Two-dimensional normal impinging jet flowfields, with or without an upper plate, were analysed by 
employing an implicit bidiagonal numerical method developed by Lavante and Thompkins Jr. The 
Jones-Launder K--E two-equation turbulent model was employed to study the turbulent effects of the 
impinging jet flowfield. The upper plate surface pressure, the ground plane pressure and other physical 
parameters of the momentum flowfield were calculated at various jet exit height and jet inlet Reynolds 
numbers. These results were compared with those of Beam and Warming’s numerical method, Hsiao and 
Chuang, and others, along with experimental data. The potential core length of the impinging jet without an 
upper plate is longer than that of the free jet because of the effects of the ground plane, while the potential core 
length of the impinging jet with an upper plate is shorter than that of the free jet because of the effects of the 
upper plate. This phenomenon in the present analysis provides a fundamental numerical study of an 
impinging jet and a basis for further analysis of impinging jet flowfields on a variable angle plate. 
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INTRODUCTION 

Analysis of the impinging jet is very important because of its wide application to engineering 
problems such as the take-off of VTOL aircraft and the vectoring of fighter planes. Studies of a 
single impinging plane jet may provide some basic understanding of multiple impinging jets. The 
ground plane effect in impinging jet flowfields is important to the performance of VTOL aircraft 
design. The vectored jet impinging on the ground plane and the wall jet flowfield developed along 
the downstream ground plane are very complicated phenomena. To approach these phenomena 
by theoretical analysis or experimental measurement can be quite difficult. The cost of exper- 
imentation may be substantial in order to understand the structure of impinging jet flowfields. 
Therefore numerical simulation may be a cost-effective approach to the study of impinging jet 
flowfields. Two-dimensional impinging jet flowfields can be divided into three regions-+) the free 
jet region, (2) the impingement region and (3) the wall jet region-as shown in Figure 1. 

Theoretical analysis of such flows has been concerned with either solving the full Navier-Stokes 
eq~a t ions l -~  or finding solutions for several separate regions.’, Two- and three-dimensional 
impinging jet flowfields were studied by Bower et al.,’ who utilized the stream function-vorticity 
and Jones-Launder K--E turbulent two-equation model. These results show good agreement 
between predictions and experimental data. Incompressible, inviscid, rotational impingement 
problems have also been considered.* The predicted ground plane pressure distributions, 
centreline velocity decay and oblique impingement flowfield structure of normal axisymmetric 
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Figure 1. Schematic of the impinging jet 

impingement and oblique impingement two-dimensional jets compared well with observations. 
This study indicates that the impingement region is dominated by a balance of the pressure forces 
due to flow deflection and the inertial forces of convection. Hence the inviscid rotational flow 
model for calculating the impingement region is a reasonable assumption. Agarwal and Bower' 
used the same turbulence model to predict the impinging jet flowfield, with an upper plate, at 
various Reynolds numbers and exit heights. 

However, these investigations were limited to the use of streamfunction-vorticity for solving the 
Navier-Stokes equations. Insight into the impinging jet flowfield is needed to use the primitive 
variables directly for solving the finite difference governing equations. In viscous flow the fine 
mesh spacing makes the MacCormack scheme with the explicit method". extremely costly. 
Implicit methodsl2' l3  make the use of large time steps possible but require the inversion of block 
tridiagonal matrices. Impinging jet flowfield analysis by the Beam and Warming method has been 
performed by Hwang and Liu.I4 A method recently developed by Ma~Cormack '~  has eliminated 
this disadvantage by introducing a predictor-corrector scheme that only requires the inversion of 
block bidiagonal matrices. The resulting finite difference equations are either upper or lower block 
bidiagonal equations that can be easily solved in one sweep. Unfortunately, this method was 
demonstrated only for a simple case .The intention here is to provide a simple implicit method to 
solve two-dimensional, viscous, compressible impinging jet flowfields. Recently an implicit 
bidiagonal numerical method, which is very similar to the new MacCormack method, was 
developed by Lavante and Thompkins Jr.16 This method has some advantages, namely the 
programming structure is simple and no matrix inversion is necessary. The resulting matrices are 
block bidiagonal and can be easily solved. The calculations presented were performed by using the 
implicit bidiagonal numerical method for solving the impinging jet, without or with an upper 
plate, at various jet inlet Reynolds numbers and jet exit heights. 

GOVERNING EQUATIONS 

In order to simplify the impinging jet problem, the following assumptions are made: 

1. The flowfield is a single normal impingement two-dimensional jet. 
2. Both ground plane and upper plate surface are adiabatic. 
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3. The fluid is an ideal gas with constant specific heat. 
4. Gravitational effects are not considered. 
5. Crossflow is not coupled with jet flow. 

The two-dimensional compressible Navier-Stokes equations can be written in conservation 
form17 as 

where 

with 

P U  

pu2+u, 

F =  [ puv+r, :J, G =  

(e + c,)u + zxy 0- k- (e + cy) u + zxy u - k- aT1 aY 

P =  ( y  - 1) [e-f  p(u2 + u2)],  

Equation (1 )  can be expressed in dimensionless form by defining dimensionless variables’ 

P’ = P / P j e t  9 X’ = x/D, Y’ = YID, 

P‘ = P/Pjet aj2,o 

k‘ = k/kjet, t’ =t(ajeJD), Reo=PjttajetDl~jett 

ur=u/ajet, U’ = ulajet, T’ = TITjet, 

e‘ = e / P j e t  afet, P’ = pIpjet9 

PI= P j e t  Cplkjet. 

The dimensionless form of equation (1) is 

a u  aFyu) a q u )  
at’ ax’ + 7 = 0 ,  

a Y  
-+- 

where 
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- p’u’ 

p’ + a: 
p’ u’ u’ + z;, 1, 

p’u’ 
p’ u‘ u’ + z:. 

G‘ = [ ~ ’ 0 ’ ~  + a; 
1 a T’ 

Pr Re, (y  - 1 )  a y ’  
(e’ + a;)u’+ z!&-k’ 

with 

P ’ = ( y - 1) [e’ - +p ’ (u’ + u’ ’)I, 

a’ = p’-- I‘ (ad -+- a d )  a d  -2-- 
Re, ax’  ay’  Re,ax” 

The primes will be dropped later for convenience. The turbulent governing equations with time 
average can be expressed in dimensionless conservation form as 

a0 ai? aG 
- +- +- = 0. 
at a x  ay  (3) 

The eddy viscosity pLt is evaluated from a modified K--E m0de1.l~. 
governing equation for this turbulence model in strong conservation form is 

The non-dimensional 

au, a F ,  aG,  
~ + - + ~ + H,=O, 
a t  a x  a y  (4) 

where 

with 
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C, = 009(exp[ - 2 q (  1 + Rt/50)]), C, = 1-44, C2=1*92[1-0.3exp (-R:)], 

aK = 1.0, ae= 1.3. 

NUMERICAL METHOD 

Grid system 

The physical region of interest, which is a rectangle in (x, y) co-ordinates, is transformed into a 
square region in (g, q)  computational co-ordinates as shown in Figure 2. A suitable transformation 
that also allows for the packing of grid points in regions of high gradients is: 

(1) transverse direction 

7 
H 

I 

I physical domain 
+W+ 

1 . . . . . . . . . . . . . . . . . . . . . . . . . .  

! I  

H 

w 

0 1.0 

Figure 2. Physical domain and computational domain of the impinging jet 
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(2) longitudinal direction 

(p"+ l)[(pl'+ l)/(pl'- 1)]27-1-pl'+ 1 
2{1+[(p"+1)/(p"-1)32"~} ' 

y = H  

q=-+- 1 1 In[( pl' + 2y/H - 1)/(B"-2y/H + l)]. 
2 2  lnC(B"+ 1) / (P"-  111 3 

where B' and P' are stretching parameters. 

Finite diference equations and numerical solution 

In most of the practical calculation cases it is convenient to transform the non-uniform grid 
system of the physical domain (x, y) into the uniform grid system of the computational domain 
(t, q) as shown in Figure 2. Equation (1) can then be transformed from Cartesian co-ordinates 
(x, y) into general co-ordinates (t, q) as 

a0 aP aC 
- +- +-= 0, 
at a t  aq 

where 

€J = U/J, P = ( F t ,  + Gty)/J,  C = ( F q x  + Gqy)/J. 
J is the transformation Jacobian 

(7) 

The numerical integration method of equation (7) has been adopted from MacCorma~k. '~  The 
resulting integration scheme is explained in detail, in this reference and will therefore not be 
repeated here. Equation (7) is integrated by the following implicit predictor-corrector set of finite 
difference equations: 

predictor 

corrector 

€I;,; 1 =$(€J; j+€JF+ so;,; 1). 

Similarly, equation (4) can be transformed from (x, y) co-ordinates into (5,q) co-ordinates and 
integrated by the MacCormack' implicit predictorxorrector set of finite difference equations. 
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Then the equations for K and E are solved simultaneously with the other primitive variables. An 
implicit bidiagonal numerical methodi6 was employed to perform the present calculations 
because it is faster and simpler than existing MacCormack implicit methods. This bidiagonal 
numerical method does not require the inversion of block tridiagonal matrices. A fourth-order 
explicit dissipation term' is added for each iteration process to help the convergence of the 
calculations. 

Boundary conditions 

The initial values of A t  (BISU and At (A( 6 U  must be given for both predictor and corrector steps 
because a spatial upwind scheme was employed in the present analysis. For simplicity, we denote 
by 6W the expressions that represent the implicit part of the boundary conditions. The boundary 
conditions in this context can be handled as follows. 

(a)  At  the axisymmetric centrel6* 2 1 - 2 3  

0 0 0  

0 0 1  
0 ,  i 2, j 

(b) At the outlet4' 7, ** 1 6 *  2 1 - 2 3  

n + l  

(13) 

SW=2(IAISU)i,,,- 1 -(lAlSU)imnx-2 (14) 

n+ 1 n + l -  n 
T2at, j='im.,, j/"(lh) Pimax, j I ,  ' imax - ' imax. j .  

The same extrapolation was applied to the implicit part of the boundary conditions: 

Since, at the time of evaluation of SW, the expressions on the LHS of equation (14) are not known, 
6W will have to be calculated by using an implicit scheme at the three points i,,,, im,,- 1 and 
imax - 2. 

(c )  At the ground plane 
ui, 1 = 0. vi ,  1 = 0 (no slip), 

a TJay = 0 (adiabatic). 

The corrector value of aW can be obtained by using the same principle from the predictor value 
of At /BJ 6U at the point j = 2.16 

6 Wn+' =RAt(lBISU)j"=+;, (1 7) 



1420 S.-H. CHUANG 

The predictor value of 6W used the following procedure: 
__ 

6 W"" = R  At(lB16U)jn=2 =6W". (20) 

The ground plane may also be placed at  the first grid node and the condition 6W=O used. 

( d )  At  the je t  inlet and upper plate surface. The inlet boundary conditions of u::', uy;' and 
Ty;' of the jet are given in the Reference 22, and 

P 1 I'; = p ; :; /C( 1 I?) q; 1, 

P ~ T ;  = PZ;; --p:;j a;,  j ( u ; : i  -uy: j ) .  

[o.o, t 3 0.5, 

(21) 

(22) 

where the pressure is obtained from the following relation: 

The turbulent boundary conditions of K and E for the upper plate in the computational domain 
are4 

0.04, t s0.15, 

K = 0-02{1 +sin[3~/2-5n(l-24)]), 0.15<4<0-5, (23) 

~ = 5  K3I2. 

Both K and E are assumed to be zero at the ground plane. 

RESULTS AND DISCUSSION 

The ground plane pressure distribution without an upper plate is shown in Figure 3. The present 
results show that it is in good agreement with the experimental data of Hsiao and C h ~ a n g , ~ ~  
Cartwright and Russellzs and Schauer and Eustis.26 The centreline velocity decay of the 
impinging jet without an upper plate is shown in Figure 4. It shows that the present calculation is 
reasonable when compared with Rubel' and Hwang and Liu.I4 The velocity vector diagram of the 
impinging jet flowfield is shown in Figure 5. The important parameters are the jet inlet Reynolds 
number and the jet exit height when the impingingjet flowfield has an upper plate. In the present 
calculation the results can be discussed as follows. 

Effects of j e t  inlet Reynolds number of the impinging flow 

In the present analysis we use R e =  100 and lo00 to check the effects of the jet inlet Reynolds 
number on the impinging flow. The jet exit height is H/D=2; W/D=4-68, M=O1 and the inlet 
velocity is as in Reference9. The ground plane pressure distributions for the two Reynolds 
numbers are shown in Figure 6. The viscous effects are more important than the convection effects 
at the ground plane for the smaller Reynolds number (Re,= 100). Hence a positive pressure 
gradient is formed when it is along the downstream x-direction and results in a secondary flow in 
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Figure 3. Ground plane pressure distributions of the impinging jet without an upper plate; fully developed jet profile 

0.8 1 +/ -;- Rubel' 

Hwang 6 ~ i u ' ~  

- Present calculat ions / ' I  

I 0.2 0'41 / 

> 

0 
0 1.0 2.0 3.0 4.0 5.0 

Y / D  
Figure 4. Centreline velocity decay of the impinging jet without an upper plate; fully developed jet profile 

i 
: , . ;  . .  . . . .  
. . I  . . . . . .  

) , I , , . .  

I ! , " .  . . . . . . . . . .  
I , , " " .  . . . . . . . . . .  

I 

, .......... _ - -  
1::::::::" ___: w====. z: 

Figure 5. Velocity vector diagram of the impinging jet without an upper plate 



1422 S.-H. CHUANG 

6 
a " 0  

I 
CL 

-0.2 

the flowfield. The inertial forces of convection are more important than the viscous forces at the 
higher Reynolds number (Re, = 1000). Therefore the ground plane pressure value is increased in 
comparison with the low-Reynolds-number case. The velocity near the upper plate is low for the 
higher Reynolds number, and the upper plate pressure approaches atmospheric pressure, as 
shown in Figure 7. 

X /  D 
0 1.0 2.0 3.0 4.0 5 

- - t c - - p .  

- 

- Re=100 --- Re=1000 
- 

H / D = 2  

EfSects of jet exit height on the impinging flow 

The jet exit height is an important parameter in impinging jet flowfields.* In the present 
calculations we take HID = 4,12 and 20 (Re, = 11 000) to analyse the effects of the jet exit height on 
the impinging flow. The pressure distributions of the ground plane and the upper plate surface for 
the various jet exit heights are shown in figures 8 and 9 respectively. The pressure in the x-direction 
approaches atmospheric pressure when HID = 4, as shown in Figure 8. The pressure recovery is 
quicker when HID = 4 because of fluid acceleration between the ground plane and the upper plate, 
as shown in Figure 9. The pressure profiles almost coincide with each other when the jet exit 
height H I D =  12 and 20 because the exit height is at or over the transitional region of the free jet. 
The pressure distributions of the ground plane over the transitional region are almost bell-shaped, 
as shown in Figure 8. This fact shows that ground plane effects on impinging jet flow with an upper 
plate can be neglected when the jet exit height is over the transitional region. The centreline 
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Figure 6. Ground plane pressure distributions of the impinging jet with an upper plate at various Reynolds numbers 

Figure 7. Upper plate surface pressure distributions at various Reynolds numbers 
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Figure 8. Ground plane pressure distributions of the impinging jet with an upper plate, at  various jet exit heights 
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velocity decay of the free jet and the impinging jet, without and with an upper plate, is shown in 
Figure 10. The potential core length of the impingingjet without an upper plate ( M 5.40) is longer 
than that of the free jet ( ~ 4 . 0 D )  because the ground plane effects induce a positive pressure 
gradient. The present centreline velocity decay results of the impinging jet have been compared 
with the Hsiao and Chuang experimental data24 and are found to be in good agreement. The 
potential core length of the impinging jet with an upper plate ( M 3.20) is shorter than that of the 
free jet ( ~ 4 . 0 0 )  owing to the effects of the ground plane and upper plate. The upper plate acts as 
the lower fuselage surface of an aircraft; hence the present analysis can provide a fundamental 
understanding of V/STOL aircraft designs. 

CONCLUDING REMARKS 

1. An implicit bidiagonal numerical method16 has some important advantages, namely the 
programming structure is simple and no matrix inversion is necessary. 

2. The pressure recovery at the ground plane with upper plate flow will be quicker than without 
upper plate flow. 

3. The impinging jet potential core length without an upper plate is longer than that of the free 
jet owing to the effects of the ground plane. However, the potential core length of the 
impinging jet with an upper plate is shorter than that of the free jet owing to the effects of the 
upper plate and ground plane. 

4. The positive gradient pressure along the ground plane downstream and the induced 
secondary flow phenomenon can be eliminated by high-Reynolds-number flow. 

5. The pressure distribution of the upper plate can be improved to a partly positive distribution 
by a high Reynolds number. 
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APPENDIX: NOMENCLATURE 

sonic velocity 
Jacobian matrices 
coefficients of turbulent model 
specific heat at  constant pressure 
inlet width of the jet 
total energy per unit volume 
flux vectors 
jet exit height from ground plane to jet inlet 
unit matrix 
maximum number of grid point in the t- and ?-direction respectively 
turbulent kinetic energy 
thermal conductivity 
Mach number 
pressure 
Prandtl number 
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Reynolds number 
turbulent Reynolds number 
diagonalized matrices 
temperature 
time 
velocity component in the x- and y-direction respectively 
physical co-ordinates 
stretching parameter of grid generation in the x- and y-direction respectively 
specific heat ratio of gas 
implicit boundary condition 
turbulent energy dissipation rate 
bulk viscosity 
viscosity 
computational co-ordinates 
density 
shear stress 
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